Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 93(4): e20201140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705943

RESUMO

This work aims to fabricate scaffold using polyurethane (PU) integrated with bourbon oil (BB) and cobalt nitrate (CoNO3) using the electrospinning technique. Morphological investigation signified a fall in fibre diameter for the PU/BB and PU/BB/CoNO3 nanocomposite than the PU. Spectral analysis indicated that BB and CoNO3 were added within the PU matrix. Wettability analysis insinuated an increase in the hydrophobic nature of the PU/BB than the PU. PU/BB/CoNO3 turned to be hydrophilic due to the integration of CoNO3 in the polymer matrix. Mechanical testing of PU/BB and PU/BB/CoNO3 indicated an increase in the tensile strength of the fabricated composites. Atomic force microscopy (AFM) portrayed the reduction in the roughness of the PU/BB and PU/BB/CoNO3 compared to the PU. The coagulation studies invariably documented the improved anticoagulant behaviour and less toxic nature of the PU/BB and PU/BB/CoNO3 in comparison with the PU. Further, bone mineralization testing revealed the enhanced apatite formation of the nanocomposite. Nanocomposite scaffolds with the fore-mentioned properties hold good potential for bone tissue engineering.


Assuntos
Osteogênese , Engenharia Tecidual , Cobalto , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier
2.
An Acad Bras Cienc ; 90(1): 195-204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641759

RESUMO

Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants.


Assuntos
Teste de Materiais , Metalocenos/efeitos da radiação , Raios Ultravioleta , Células 3T3 , Animais , Bovinos , Hemólise , Histocompatibilidade , Interações Hidrofóbicas e Hidrofílicas , Metalocenos/química , Camundongos , Microscopia Eletrônica de Varredura , Coelhos , Propriedades de Superfície/efeitos da radiação
3.
An. acad. bras. ciênc ; 90(1): 195-204, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886907

RESUMO

ABSTRACT Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants.


Assuntos
Animais , Coelhos , Ratos , Raios Ultravioleta , Teste de Materiais , Metalocenos/efeitos da radiação , Propriedades de Superfície/efeitos da radiação , Bovinos , Microscopia Eletrônica de Varredura , Células 3T3 , Interações Hidrofóbicas e Hidrofílicas , Metalocenos/química , Hemólise , Histocompatibilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...